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EXECUTIVE SUMMARY

Problem: Traditionally, natural gas has been analyzed by relatively cumbersome and time-
consuming gas chromatographic methods that are not conveniently adaptable to field use.

Objective: The objective of this program was to investigate and define the use of midband
Fourier transform infrared (FT-IR) spectroscopy as a rapid and reliable means of estimating
natural gas composition and derived properties in the field.

Importance of Project: This method provides a quick and simple way of estimating the
concentrations of the major natural gas components and their derived properties simultaneously.
Compared to the gas chromatographic procedure, the spectroscopic method offers advantages in
cost, time required per analysis, and adaptability to use in remote locations.

Technical Approach: Since methane, ethane, propane, and butane each have distinct infrared
spectra, the measurement of their individual concentration can be performed. Using standards,
calibration models were constructed to correlate actual concentration of components with FT-IR
spectra. The calibration models were validated using a set of independently procured and analyzed
natural gas samples.

Accomplishments: A fast experimental protocol was established for the simultaneous
determination of methane, ethane, propane, and butane in nitrogen using FT-IR spectroscopy.
The spectra were collected in the region of 4,000 - 400 cm” wavenumbers in a 100 mm
pathlength gas sample cell at absolute pressures between 100 and 1,000 mm Hg. Correlation
between blending partial pressure, or GC-based analysis, and FT-IR data produced squared
correlation coefficients (R?) in excess of 0.98. Limited validation experiments indicate that FT-IR
spectra, taken at 500 mm Hg absolute sample cell pressure provides favorable analysis for the
C, - C, natural gas components down to one mole percent concentration. Computer output of
compositional data may also include values for various composition related properties, e.g., heat
of combustion, carbon-to-hydrogen ratio, and density. Using commercially available equipment,
these analyses may be performed in the laboratory or in the field.

Military Impact: Improved analytical chemical speed and convenience facilitates obtaining
compositional data on natural gas in the laboratory or in the field. The method may also be
adopted as an on-line analyzer for natural gas pipelines.
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I. INTRODUCTION

Composition of nétural gas in pipelines is not constant." King demonstrated that, as expected,
the composition of natural gas will have a marked effect on the operational characteristics of
engines burning natural gas as the fuel.? Kubesh and coworkers showed that gas composition has
a significant effect on the octane number of natural gas blends used as fuel in internal combustion
engines.® For these reasons and for determining values in product custody transfers, a reliable,
quick, and accurate method was needed to determine gas composition that is more convenient and

timely to perform than the commonly used gas chromatographic method.

Between 85 and 95 volume percent (vol%) of pipeline quality natural gas is methane. Genérally,
the balance of the gas is ethane, propane, butane, and inert gases. Although some studies have
found measurable amounts of higher molecular weight hydrocarbons, it was shown that the
components present in natural gas at concentrations of less than 0.2 mole percent (mol %) do not
contribute significantly to the calorific value of the natural gas.* For this reason, a natural gas
may be adequately described by the concentrations of the four lightest saturated hydrocarbons,
i.e., methane through butane. From the concentrations of the major active ingredients, several
pertinent gas properties, e.g., heating value, density, etc., may be easily calculated by built-in

computers.

FT-IR and near-IR spectroscopies have the potential to meet the requirements of an on-line or a
transportable natural gas analyzer. Near-infrared (near-IR) spectroscopy generally operates in the
900 to 2,000 nanometer (nm), or 0.9 to 2.0 micrometer (vm), wavelength region. Midband
Fourier transform infrared (FT-IR) spectroscopy is normally used in the 2.0 to 50 xm region.
Due to limitations of optical window materials, FT-IR is usually used in the restricted spectral
region from about 2.5 to 25 um, corresponding to 4,000 to 400 cm” wavenumbers. In comparing
near-IR with FT-IR, it may be noted that near-IR is the result of second and third overtones and
combination bands of the fundamental frequencies that produce the directly measurable FT-IR
region of the infrared spectrum. Since FT-IR spectroscopy is based on the measurement of

characteristic fundamental resonances, it produces specific, usually sharp, well-defined peaks at




substantially increased extinction coefficients. Potentially, these facts lead to higher analytical
specificity, accuracy, and sensitivity. The higher sensitivity manifested by FT-IR allows accurate

measurement of the various natural gas components at substantially reduced pressures.

Brown and Lo demonstrated the feasibility of near-IR in monitoring the energy content of natural
gas.’ The quartz optics and fiber-optic probes typically used with near-IR instruments allow the
analyzer to be positioned remote to the measurement site, making it adaptable to field use.®
Westbrook” used near-IR to analyze natural gas at 207 kPa (30 psig) in a flowing line. During
the FT-IR analysis of gasolines and turbine and diesel fuels, Fodor et al. demonstrated that the
use of infrared spectroscopic analyses, combined with multivariate calibration techniques, allowed
the estimation of several pertinent fuel properties. In these experiments the accuracy of
measurements was comparable to measurements from techniques that were designed to directly

measure the desired fuel properties.®*
Il. OBJECTIVE

The objective of this program was to explore the use of midband FT-IR spectroscopy as a rapid
and reliable laboratory or field method to estimate natural gas composition and derived properties

and to demonstrate the feasibility of FT-IR as an on-line natural gas analyzer.
. APPROACH

Reference or calibration gases were blended according to compositions determined by statistical
treatment of the natural gas compositional limits to maximize the expected correlational output
using a minimum number of samples. FT-IR spectra were generated from each of these
quantitatively blended reference gas mixtures. The same blends were also analyzed by gas
chromatography (GC) to substantiate their composition. Using these data, calibration models were

developed for methane, ethane, propane, and butane in nitrogen.




IV. EXPERIMENTAL

Compositions of calibration gas mixtures were designed using the E-CHIP statistical prdgram.
The experimental design included the four C,-C, saturated hydrocarbons in nitrogen to provide
the minimum number of standard samples, allowing calibration within the widest expected

concentration ranges for each component:

methane 50 to 100 vol%
ethane 0to 10 vol%
propane 0 to 30 vol%
butane 0to 5 vol%
nitrogen 0 to 35 vol%

To properly blend the various gas components, a four-port mixing manifold was fabricated, and
regulating needle valves were installed at each port. Quantitative blending of calibration gas
standards was performed using a precision vernier "pressure volume controller” and a pressure
regulator and monitor (Heise Models PTE-1 and HBC-1000). A schematic diagram of this
sampling system is shown in Fig. 1. The calculated compositional data on these calibration
standard mixtures are given in TABLE A-1 of Appendix A. Concentrations of components of the
calibration gas standards were confirmed by GC using an instrument (Hewlett-Packard Model
5890 Series IT) equipped with a gas sampling valve and a thermal conductivity detector. A GC
method, based on the procedure described in ASTM D 1945-91 (Standard Method for the Analysis
of Natural Gas by Gas Chromatography), was used as the benchmark method for the analysis of
all natural gas samples. Matheson Gas Co. primary standards were used to calibrate the GC. The
operating conditions of the GC are summarized in TABLE A-2. To facilitate quantitative FT-IR
analysis, pressure control was provided by the same precision pressure regulator that was used for
the blending operations. Temperature control relied on the constant temperature environment of

the spectrometer's internal sample compartment.
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Figure 1. Schematic diagram of gas sampling system

The 100 mm pathlength gas cell was equipped with KBr windows. Spectra of the average of 32
FT-IR scans of each gas sample were collected on all 44 calibration gas mixtures at a resolution
of 2 cm™ within the 4,000 to 400 cmi® wavenumber spectral region at 100, 300, 500, 700, and
1,000 mm Hg absolute cell pressure. The various applied gas pressures served to optimize FT-IR

response to the vastly different concentration ranges of the natural gas components.

V. CHEMOMETRICS

Spectroscopic data were correlated to fuel property values using Galactic Industries' PLSplus
chemometric software package within the GRAMS/386 program. Since all gas components will
exhibit only carbon-hydrogen bonds in their IR spectra, no regions were excluded from building

the correlation models.

The PLS method creates a simplified representation of the spectroscopic data by a process known
as spectral decomposition. Good summary treatises of PLS were published by Martens and Naes'!
and by Haaland and Thomas.'>"® The PLS approach is based on a bilinear modeling method. A
precursor to the PLS technique, which is closely linked to the bilinear framework used in PLS,
is the latent root regression analysis, formulated in the 1970's by Webster, Gunst, and Mason.**

The PLS algorithm initially calculates the concentration, or property value, weighted average




spectrum of all the spectra of the fuels in the calibration matrix. This calculation is followed by
a computationally intensive procedure, accomplished by performing cross-validation calculations
for all samples in the training set. In the cross-validation procedure, a given number of samples
(in this study, two) are removed from the calibration data set, and a calibration model, calculated
from the remaining samples in the training set, is used to predict the concentration (property
value) of the removed samples. The residual errors, or the difference between the predicted and
known concentration values, are squared and summed to determine the prediction error.
Repeating this cross-validation process for the other samples in the training set results in a refined
regression model that is useful in predicting the properties of unknown fuels. The results of
spectral decomposition give one set of scores and one set of factors (loading vectors) for
calibration for each component of interest. After a calibration model is established, it must be
tested by validation experiments in which the calibration model is applied to similar fuels that
were not part of the calibration training set. The predicted property values may then be compared
with those derived by established ASTM procedures.

It is critical to establish the correct number of factors to be used in the correlation files, because
the predicted fuel property values calculated from the model depend upon the number of factors
used in the model. Too few factors will not adequately model the system, while too many factors
will introduce noise vectors in the calibration, resulting in less than optimum prediction for
samples outside the calibration set. The PLS program by Galactic Industries provides data for
selecting the appropriate factor by plotting the prediction residual error sum of squares (PRESS)
versus the factor. The factor may be selected for (a) the point at which the PRESS value is at a
minimum, normally corresponding to a maximum in the value of the squared correlation
coefficient, R?, (b) the point at which the curve indicates that further increase in factors should
have negligible effects (a rather arbitrary choice), or (c) a compromise as recommended by
Haaland and Thomas. These authors advise the use of an F-statistic to arrive at the best
compromise in factors. The F-statistic can be calculatéd as the ratio of the minimum PRESS value
to all PRESS values corresponding to fewer factors. As the difference between the minimum
PRESS and other PRESS values become smaller, the probability, p, that each additional factor

will provide significant improvement to the model becomes smaller. Haaland and Thomas




empirically determined that the optimum number of factors should be at the first PRESS value,
where the F-statistic probability drops below 0.75. Initially, we used factors corresponding to an
F-statistic probability of 0.5, coinciding with the maximum for the squared correlation
coefficients. However, to avoid possible overfitting, we standardized by using the compromise

value of p < 0.75, as suggested by Haaland and Thomas.

VI. RESULTS AND DISCUSSION

A. Calibrations

The synthetic blends of pure components were mixed following the E-CHIP statistical design
guidelines. Concentrations of the individual components, expressed in mole percent (mol%), were
available by calculation from the blending partial pressure data and the supporting GC data. The
FT-IR spectra were collected at ambient temperature at gas sample cell absolute pressures of 100,
300, 500, 700, and 1,000 mm Hg.

The FT-IR spectra of the pure calibration gas components (methane, ethane, propane, butane, and
nitrogen), obtained at absolute gas cell pressure of 100 mm Hg, are shown in Figs. B-1 through

B-5 in Appendix B. Nitrogen has no active infrared resonance band.

The raw, unmodified spectroscopic data were correlated to both sets of concentration data (i.e.,
those derived from blending partial pressures and those obtained from GC analysis) for methane,
ethane, propane, butane, and the IR-inactive inert diluting nitrogen, using Galactic Industries'
PLSplus chemometric software package. Since all gas components exhibit only carbon-hydrogen
bonds in their IR spectra, no spectral regions were excluded from building the correlation models.
To maintain simplicity of operation without adverse effects on measurement capabilities, no

baseline segments were excluded from the calibration files.

Data derived from both the blending partial pressure information and from gas chromatographic
data were used for the calibrations. A summary of the data from the pressure and GC-derived

calibration experiments is summarized in TABLES A-3 and A4, respectively. As expected, these




two data sets gave essentially identical results, therefore further illustrations show only the

pressure-derived data.

Figures B-6 and B-7 in Appendix B are barcharts derived from TABLES A-3 and A-4 using the
factors obtained at minimum PRESS and at p<0.75, respectively. These figures show that R-
squared values for of all of the calibrations are above 0.95, and if the 700 mm Hg data for butane

are excluded, all R-squared values are above 0.98.

The excellent agreement between the calibration standards and FT-IR derived concentration data
is illustrated in Figs. B-8 through B-12 for methane, ethane, propane, butane, and nitrogen,
respectively, using factors at the compromise p<0.75. Further information is given in the
bracketed area of each figure for (a) the number of factors, F, (b) the sum of the absolute value
of the differences between the known and FT-IR derived concentrations for all the samples, or
total error, TE, (c) squared correlation coefficient, R?, and (d) root mean squared difference,
RMSD, an indication of the average error in the analysis. Figures B;13 through B-17 show the
relationship between the standard error of cross-validation, SECV, and the sample cell pressures
for the five components using factors corresponding to (a) minimum PRESS and (b) p<0.75
values. In the case of methane (and the inert, inactive diluent nitrogen), the SECV decreases with
increasing pressure while remaining fairly constant with the C,-C, hydrocarbons. This suggests
that improved analytical data may be obtained for methane at elevated pressures. However, using
a 100 mm gas cell at elevated pressures, all of these hydrocarbons displayed spectra with some
peaks in the nonlinear range of the absorbance, indicating detector overload. For instance, such
detector overload may be observed in case of methane for each of the two characteristic resonance
bands, i.e., at 3,014 cm™ due to asymmetric stretching and at 1,303 cm™, the result of asymmetric
bending. Note, however, the reduced error (SECV) for methane at the higher calibration

pressures (concentrations) in comparison with those of the other components.

As discussed earlier, to avoid problems caused by overfitting, it is desirable to use the smallest
pumber of factors in the model that yields acceptable data. During our calibrations, we used up

to 20 factors. Factors associated with minimum in PRESS values, or at p<0.75, were lowest for




all five components at sample cell pressures of 100 mm Hg. These data are shown in Figs. B-18

and B-19.

It should be noted that computer output of measurement results may also show composition related
properties, i.e., properties that may be calculated from compositional data, e.g., the heat of
combustion, carbon-to-hydrogen ratio, density, etc. These are key properties used for air/fuel

ratio management in engines, or for gas custody transfers.
B. Validations

Following the calibration studies on synthetic natural gas compositions, the method was validated
by applying the developed calibration models to FT-IR spectra of independently obtained and

analyzed natural gas samples.

Prior to comparing the GC and FT-IR derived data, experiments were carried out to establish the
realistic precision of the benchmark GC method. A natural gas standard, prepared and analyzed
by Scott Specialty Gas Co., was used to establish GC analytical repeatability. The Scott gas
sample was analyzed by the GC method 15 times, and the sample standard deviation was
calculated. TABLE A-5 provides a summary of the GC analyses, including the applicable ASTM
repeatability values, the known concentration values, the average of the GC data, and a measure
of error in the GC analysis. Results indicate that the average residual error, i.e., the average of
the arithmetic difference between the average GC data and the known data, is -0.13 mol% for
methane, 0.02 mol% for ethane, and 0.01 mol% for propane and butane. When percent error is
calculated, the resultant figures are 0.15, 0.57, 1.00, and 2.50 percent for methane through
butane, respectively.

The FT-IR derived analytical results were evaluated by comparing them to the GC data. As

practiced during the calibration experiments, an FT-IR spectrum was taken for each sample at




absolute pressures of 100, 300, 500, 700, and 1,000 mm Hg. Compositional analyses of these

samples were derived from these spectra by using the appropriate calibration models.

Two methods were used to evaluate correlations between the GC and the FT-IR methods. A
simple way of assessing the agreement between the benchmark and new measuring techniques
considers the residual errors (arithmetic differences) between the established and new methods.
Another procedure uses the "limits of agreement.”” This method is recommended in cases where
the results of the benchmark method may be uncertain. To generate the limits of agreement
between the generally accepted (GC) and new (FT-IR) methods, the residual error is plotted
against the average value of the two methods, and the results are evaluated at one and two

standard deviations, e.g., Difference Value + 2 standard deviation (Difference Values).

Results of the validation experiments are given in TABLES A-6a and A-6b. In these tables the
results of analysis for each of nine validation samples are presented for methane, ethane, propane,
butane, and for the IR-inactive, diluent "nitrogen." The presented data include (a) the GC data,
(b) the FT-IR derived data as measured at five pressures, and (c) the residual error. The residual
error in the validation experiments are shown in Figure 20, and the sample standard deviation of
the residual errors are shown in Figure 21. The limits of agreement data are provided in Figs.
B-22 through B-26 for methane, ethane, propane, butane, and diluting, inert, IR-inactive

"nitrogen. "

It may be concluded that 500 mm Hg absolute sample cell pressure provides a good overall
compromise to achieve favorable analysis for the C, - C, natural gas components down to one

mole percent concentration using FT-IR spectroscopy.




Vil. CONCLUSIONS

A fast experimental protocol was established for the simultaneous determination of methane, ethane,
propane, and butane in nitrogen using FT-IR spectroscopy. The spectra were collected in the region
of 4,000 - 400 cm™ wavenumbers in a 100 mm pathlength gas sample cell at absolute pressures
between 100 and 1,000 mm Hg. Correlation between blending partial pressure, or GC-based analysis,
and FT-IR data produced squared correlation coefficients (R?) in excess of 0.98.

Limited validation experiments indicate that FT-IR spectra, taken at 500 mm Hg absolute sample
cell pressure provides favorable analysis for the C, — C, natural gas components down to one mole
percent concentration. Computer output of compositional data may also include values for

composition related properties, e.g., the heat of combustion, carbon-to-hydrogen ration, density.
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Table A-1. Calibration Gas Mixture Composition (mol%)

Methane Ethane Propane Butane Nitrogen
61.13 2.77 1.42 0.00 34.68
100.00 0.00 0.00 0.00 0.00
74.66 0.00 0.00 0.00 2534
63.88 0.00 21.69 0.00 14.50
61.13 997 3.61 0.00 25.29
4998 10.65 0.00 5.02 3436
54.86 10.17 0.00 0.00 3497
86.58 0.00 8.30 5.11 0.00
49.60 9.90 8.23 3.63 28.64
75.10 11.58 837 495 0.00
49.04 0.00 2597 391 21.08
82.99 7.31 0.00 0.00 9.71
89.98 10.02 0.00 0.00 0.00
49.87 292 30.04 0.00 17.18
59.19 6.25 12.60 5.00 16.96
4996 977 22.97 0.00 17.30
57.69 947 28.11 4.73 0.00
100.00 0.00 0.00 0.00 0.00
53.57 5.03 3.77 2.55 35.90
49.73 0.00 15.18 0.00 35.08
96.26 0.00 0.00 3.74 0.00
86.21 10.12 0.00 3.66 0.00
49 84 732 12.09 0.00 30.75
69.70 0.00 30.30 0.00 0.00
53.70 0.00 30.12 1.41 14.76
71.31 0.00 0.00 3.61 25.08
49.67 0.00 30.40 5.10 14.96
4980 0.00 10.03 5.10 35.07
86.13 0.00 8.44 0.00 543
92.19 2.76 0.00 5.06 0.00
75.12 0.00 0.00 0.00 24 88
63.87 5.02 14.02 0.00 17.08
68.10 10.36 21.54 0.00 0.00
85.03 0.00 0.00 5.09 987
59.79 0.00 0.00 5.25 3496
52.84 10.01 2994 0.00 721
77.50 4.74 15.25 2.52 0.00
66.11 0.00 29.07 482 0.00
66.83 3.01 0.00 4.99 25.16
4967 10.25 0.00 5.07 35.01
54.72 10.06 30.21 5.02 0.00
7438 10.14 0.00 497 10.52
63.14 10.16 0.00 1.39 2530
4987 7.24 29.81 3.66 942
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TABLE A-2. Gas Chromatographic Conditions

Instrument: Hewlett-Packard model 5890 Series I
Detector: Thermal conductivity, 250°C
Injector: Gas sampling valve, 0.25 mL sample loop, 125°C
Column: Porapak QS, 40/60 mesh, 4.6 m x 3.2 mm (15 ft x 1/8 in.) stainless steel packed
column :
Carrier Gas: Helium
Flow Rates: Analytical: 20 mL/min
Reference: 30 mL/min
Column Program: Initial temperature: 100°C
Initial hold: 0 min
Rate: 20°C/min
Final temperature: 225°C
Final hold: 4 min
Total Analytical
Time Required: Approx. 15 min
16




TABLE A-3. FT-IR Calibration for Natural Gas Components
Based on Blending Partial Pressures of Synthetic Standards

P’ (abs) at min. PRESS atp < 0.75
Compound mmHg E _SECV _R E SECV R?
methane 100 4 1.652 0.9891 3 1.804 0.9872
300 7 1.350 0.9928 6 1410 0.9922
500 11 1.184 0.9944 8 1.301 0.9932
700 11 1.138 0.9948 8 1.234 0.9940
1000 13 0.664 0.9982 11 0.714 0.9980
ethane 100 8 0.179 0.9985 7 0.198 0.9981
300 9 0.254 0.9969 7 0.268 0.9966
500 9 0.193 0.9982 8 0.214 0.9978
700 12  0.200 0.9981 10 0.218 0.9977
1000 20 0.138 0.9991 18 0.151  0.9989
propane 100 11 0.350 0.9992 5 0.365 0.9991
300 20 0.479 0.9984 19 0.522 0.9981
500 20 0.376 0.9990 17 0.414 0.9988
700 18 0.650 0.9971 15 0.711  0.9965
1000 20 0.469 0.9985 17 0.509 0.9982
butane 100 13 0.152 0.9956 11 0.158 0.9952
300 18 0.223  0.9906 17 0.228 0.9903
500 20 0.257 0.9881 18 0.280 0.9861
700 20 0.442 0.9627 17 0.477 0.9565
1000 20 0.228 0.9906 18 0.251 0.9887
nitrogen 100 4 1.808 0.9818 4 1.808 0.9818
300 7 1.400 0.9890 6 1.453 0.9882
500 9 1.333 0.9901 8 1.405 0.9890
700 10 1.077 0.9935 8 1.143 0.9929
1000 8 0.856 0.9960 7 0.898 0.9958
Notes:
P’ Absolute pressure, mm Hg
PRESS  Predicted Residual Error Sum of Squares
P F-statistic probability
F Number of factors in calibration model
SECV Standard Error of Cross Validation
R? Squared correlation coefficient
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TABLE A-4. FT-IR Calibration on Natural Gas Components
Based on GC Analysis of Synthetic Blend of Standards

P’ (abs) at min. PRESS

Compound mmHg _F _SECV R?

methane

ethane

propane

butane

nitrogen

100 4 1.545 0.9905
300 7 1.350 0.9928
500 10 1.230 0.9940
700 10 0.962 0.9964
1000 13 0.823 0.9973

100 15 0.183 0.9984
300 9 0.254 0.9969
500 20 0.193 0.9982
700 16 0.224 0.9976
1000 10 0.227 0.9975

100 5 0.488 0.9983
300 20 0479 0.9984
500 20 0.432 0.9987
700 20 0.709 0.9965
1000 19 0.498 0.9983

100 14 0.152 0.9957
300 18 0.223  0.9906
500 20 0.305 0.9828
700 20 0.470 0.9582
1000 19  0.282 0.9855

100 4 1.775 0.9823
300 7 1.400 0.9890
500 10 1.263 0.9910
700 10 1.040 0.9940
1000 10 0.912 0.9953

Absolute pressure, mm Hg

Predicted Residual Error Sum of Squares
F-statistic probability

Number of Factors in calibration model
Standard Error of Cross Validation
Squared correlation coefficient
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atp < 0.75
EF SECV R?
4 1.545 0.9905
6 1410 0.9922
8 1.319 0.9931
8 1.032 0.9960
8 0.899 0.9969
12 0.202 0.9980
7 0.268 0.9966
16 0.205 0.9980
14 0.246 0.9971
8 0.238 0.9973
4 0.524 0.9981
19 0.522 0.9981
17 0.467 0.9985
16 0.758 0.9960
16 0.524 0.9981
11 0.158 0.9953
17  0.228 0.9903
14 0.335 0.9798
17  0.501 0.9526
16 0.300 0.9836
4 1.775 0.9823
6 1453 0.9882
8 1.364 0.9895
8 1.075 0.9937
7 0.959 0.9952




TABLE A-5. GC Analysis of a Scott Natural Gas Standard

known GC ASTM
compound mol % mol % repeatability
methane 88.68 88.81 0.30
ethane 3.50 3.48 0.05
propane 1.00 0.99 0.03
butane 0.40 0.38 0.03

GC = average result of 15 measurements

stds = sample standard deviation of 15 measurements

error % = 100*(arithmetic difference / known)

19

GC
stds

0.30
0.05
0.03
0.38

residual error
(known-GC)

-0.13
0.02
0.01
0.01

error %

0.15
0.57
1.00
2.50
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